What does involute gear mean?

Definitions for involute gear
in·vo·lute gear

This dictionary definitions page includes all the possible meanings, example usage and translations of the word involute gear.

Wikipedia

  1. Involute gear

    The involute gear profile is the most commonly used system for gearing today, with cycloid gearing still used for some specialties such as clocks. In an involute gear, the profiles of the teeth are involutes of a circle. The involute of a circle is the spiraling curve traced by the end of an imaginary taut string unwinding itself from that stationary circle called the base circle, or (equivalently) a triangle wave projected on the circumference of a circle. The involute gear profile was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with. Thus, n and m tooth involute spur gears with a given pressure angle and pitch will mate correctly, independently of n and m. This dramatically reduces the number of shapes of gears that need to be manufactured and kept in inventory. In involute gear design, contact between a pair of gear teeth occurs at a single instantaneous point (see figure at right) where two involutes of the same spiral hand meet. Contact on the other side of the teeth is where both involutes are of the other spiral hand. Rotation of the gears causes the location of this contact point to move across the respective tooth surfaces. The tangent at any point of the curve is perpendicular to the generating line irrespective of the mounting distance of the gears. Thus the line of the force follows the generating line, and is thus tangent to the two base circles, and is known as the line of action (also called pressure line or line of contact). When this is true, the gears obey the fundamental law of gearing: The angular velocity ratio between two gears of a gearset must remain constant throughout the mesh. This property is required for smooth transmission of power with minimal speed or torque variations as pairs of teeth go into or come out of mesh, but is not required for low-speed gearing. Where the line of action crosses the line between the two centres, it is called the pitch point of the gears, where there is no sliding contact. The distance actually covered on the line of action is then called line of contact. The line of contact begins at the intersection between the line of action and the addendum circle of the driven gear and ends at the intersection between the line of action and the addendum circle of the driving gear.The pressure angle is the acute angle between the line of action and a normal to the line connecting the gear centers. The pressure angle of the gear varies according to the position on the involute shape, but pairs of gears must have the same pressure angle in order for the teeth to mesh properly, so specific portions of the involute must be matched. While any pressure angle can be manufactured, the most common stock gears have a 20° pressure angle, with 14½° and 25° pressure angle gears being much less common. Increasing the pressure angle increases the width of the base of the gear tooth, leading to greater strength and load carrying capacity. Decreasing the pressure angle provides lower backlash, smoother operation and less sensitivity to manufacturing errors.Most common stock gears are spur gears, with straight teeth. Most gears used in higher-strength applications are helical involute gears where the spirals of the teeth are of different hand, and the gears rotate in opposite direction. Only used in limited situations are helical involute gears where the spirals of the teeth are of the same hand, and the spirals of the two involutes are of different "hand" and the line of action is the external tangents to the base circles (like a normal belt drive whereas normal gears are like a crossed-belt drive), and the gears rotate in the same direction, such as can be used in limited-slip differentials because of their low efficiencies, and in locking differentials when the efficiencies are less than zero.

Wikidata

  1. Involute gear

    The involute gear profile is the most commonly used system for gearing today. In an involute gear, the profiles of the teeth are involutes of a circle. In involute gear design contact between a pair of gear teeth occurs at a single instantaneous point where two involutes of the same spiral hand meet. Contact on the other side of the teeth is where both involutes are of the other spiral hand. Rotation of the gears causes the location of this contact point to move across the respective tooth surfaces. The path traced by this contact point is known as the Line of Action. A property of the involute tooth form is that if the gears are meshed properly, the line of action is straight and passes through the Pitch Point of the gears, and is tangent to the two base circles. When this is true, the gears obey the Fundamental Law of Gearing: The angular velocity ratio between two gears of a gearset must remain constant throughout the mesh. This property is required for smooth transmission of power with minimal speed or torque variations as pairs of teeth go into or come out of mesh, but is not required for low-speed gearing.

How to pronounce involute gear?

How to say involute gear in sign language?

Numerology

  1. Chaldean Numerology

    The numerical value of involute gear in Chaldean Numerology is: 3

  2. Pythagorean Numerology

    The numerical value of involute gear in Pythagorean Numerology is: 5


Translations for involute gear

From our Multilingual Translation Dictionary

Get even more translations for involute gear »

Translation

Find a translation for the involute gear definition in other languages:

Select another language:

  • - Select -
  • 简体中文 (Chinese - Simplified)
  • 繁體中文 (Chinese - Traditional)
  • Español (Spanish)
  • Esperanto (Esperanto)
  • 日本語 (Japanese)
  • Português (Portuguese)
  • Deutsch (German)
  • العربية (Arabic)
  • Français (French)
  • Русский (Russian)
  • ಕನ್ನಡ (Kannada)
  • 한국어 (Korean)
  • עברית (Hebrew)
  • Gaeilge (Irish)
  • Українська (Ukrainian)
  • اردو (Urdu)
  • Magyar (Hungarian)
  • मानक हिन्दी (Hindi)
  • Indonesia (Indonesian)
  • Italiano (Italian)
  • தமிழ் (Tamil)
  • Türkçe (Turkish)
  • తెలుగు (Telugu)
  • ภาษาไทย (Thai)
  • Tiếng Việt (Vietnamese)
  • Čeština (Czech)
  • Polski (Polish)
  • Bahasa Indonesia (Indonesian)
  • Românește (Romanian)
  • Nederlands (Dutch)
  • Ελληνικά (Greek)
  • Latinum (Latin)
  • Svenska (Swedish)
  • Dansk (Danish)
  • Suomi (Finnish)
  • فارسی (Persian)
  • ייִדיש (Yiddish)
  • հայերեն (Armenian)
  • Norsk (Norwegian)
  • English (English)

Word of the Day

Would you like us to send you a FREE new word definition delivered to your inbox daily?

Please enter your email address:


Citation

Use the citation below to add this definition to your bibliography:

Style:MLAChicagoAPA

"involute gear." Definitions.net. STANDS4 LLC, 2024. Web. 30 Apr. 2024. <https://www.definitions.net/definition/involute+gear>.

Discuss these involute gear definitions with the community:

0 Comments

    Are we missing a good definition for involute gear? Don't keep it to yourself...

    Image or illustration of

    involute gear

    Credit »

    Free, no signup required:

    Add to Chrome

    Get instant definitions for any word that hits you anywhere on the web!

    Free, no signup required:

    Add to Firefox

    Get instant definitions for any word that hits you anywhere on the web!

    Browse Definitions.net

    Quiz

    Are you a words master?

    »
    return to its original or usable and functioning condition
    A restore
    B demolish
    C depend
    D inspire

    Nearby & related entries:

    Alternative searches for involute gear: